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Dynamics of spiral waves under global feedback in excitable domains of different shapes
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It is found that the dynamics of spiral waves subjected to global feedback is extremely sensitive to the
domain shape. Bifurcations in the velocity field which specifies the resonant drift of the spiral wave core
induced by global feedback are analyzed. It is shown, for example, that smooth variation of the eccentricity of
an elliptical domain induces a cascade of bifurcations that can dramatically change the spiral wave evolution.
In a square domain a set of point attractors appears instead of the circular resonance attractor typical of a
circular domain. These predictions are in good quantitative agreement with numerical integrations of an
excitable reaction-diffusion system performed under global feedback.
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I. INTRODUCTION two-dimensional domains the variety of spatio-temporal pat-

Pattern formation in distributed reaction-diffusion systems!€/ns is much broader than in one-dimensional sysfériis
with nonlinear local kinetics is studied for application to ~ Numerical and experimental results reported recef2ly
quite different physical, biological and chemical mefliz2]. demonstrate a strong difference in spiral wave dynamics in
It has become clear in recent years that pattern evolution ifiircular and elliptical domains subjected to global feedback.
many experimental systems is affected by some nonlocal efn this work the influence of domain shape on the evolution
fects, e.g., global feedback, when the local kinetics is influ-of spiral waves is investigated in more detail. The basic idea
enced by the integral of the activity taken over the wholeis to determine a velocity field that specifies the resonant
medium in a confined geometry. Examples of experimentadlrift induced by global feedback in domains of different
systems that include such global feedback are an electricallghape. The study is based on a generic description of excit-
heated catalytic surface, the average temperature of which &ble media using only minimal information about their prop-
kept constanf3], ac gas discharge between two glass plategrties. The main assumption is that the feedback signal is so
[4], a catalytic surface kept in a continuously stirred tanksmall that the drift induced is slow. The results of this sim-
reactor(CSTR) [5], semiconductor devicd$], etc. plified consideration are compared with numerical data ob-
Recent experimental investigations of the Belousov-tained by integration of a specific reaction-diffusion model.
Zhabotinsky(BZ) reaction[7,8] and catalytic CO oxidation
on platinum[9] proved that global feedback can be used Il. MATHEMATICAL MODEL
efficiently to control pattern formation processes. Theoretical

o It is well known that the qualitative dynamic features of
study demonstrates that global feedback creates conditions, processes in reaction-diffusion systems are rather ro-

for the appearance of quite new or the stabilization of knOWIﬁbust and insensitive to the exact form of mathematical model

spatio-temporal patterrid0-13. . i
A spiral wave(a pattern typical in excitable mediean be applied[1,2,2]. We use below a two-component model,

also effectively manipulated using global feedback as was au )
found in numerical computationgl4] and in experiments — =D Vu+F(uv) - 1),

. . . . at
with the BZ reaction[15]. Such control is important for dif-
ferent applications, e.g., low voltage defibrillation of cardiac P
tissue[16,17. 2%~ Guw), (1)
It was shown recently that the size of the excitable do- at

main is a very important _control parameter, in addjtiqn toWhere variablesi(x,y,t) andv(x,y,t) can be interpreted as
other very common ones like the time delay and gain in the L o

: . o concentrations of the reagents within a thiguasitwo-
feedpa_ck Ioop[1_8,19. .For instance, the stability condlpons dimensional reaction layer. The functioh(t) specifies the
of a rigidly rotating spiral placed near the center of a circular : : S ) .
domain directly depend on the domain size. Moreover Onexlter'nr:ljl forcll_ngée.g:f |IIu:n|nat|rc1)n oLtTe Illght—lsendsgve BZ

. s . L ' solution applied uniformly to the whole simulated domain.
disks of sufficiently large size, global feedback induces mo For the functionsF(u,v) and G(u,v) we take the form

tion of the spiral wave core along a closed circular ofthie S )
so-called resonance attract¢t5,19,2Q. used earlier in Refq14,19-2]:

Up to now the role pf domain ;hapg has_ not been studied F(u,v) =f(u) - v,
systematically in relation to reaction-diffusion systems with
global feedback. Circular- or square-shaped domains are

; ; ) - kyu, u<o,
commonly used in experiments and computations as they are
the two simplest types of two-dimensional confined geom- fw=1k(u-a), c<u<l-o,
etry[7,9,11,14,1% The only well established result is that in ko(1-u), 1l-o<u,
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FIG. 1. Resonant drift of a spiral wave in a circular domain with
radius Ry=3\ induced by periodic forcing(t)=0.02 co$wt). The
excitable medium is described by systéty and(2). In the shaded
regionv(x,y,0)=0.2. The trajectories of the spiral wave {jfhin
solid curve and of the spiral coréhick solid ling are shown. The
direction of drift is specified by the angte~-0.17.

ku-v, kgu—v =0,

G(U,U) = {ke(kgu_v)’ kgu_v ~o,

with the following parameter value&;=1.7,ky=2, k.=6.0,
a=0.1,0=0.01,¢=0.3, andD,=1. Parameterk; andk, are
chosen in such a way that functidu) is continuous au
=g and 1-o.

This system has a single uniform rest stdtgx,y)
=v(x,y)=0] which is stable with respect to small perturba-

)

tions. However, suprathreshold perturbation applied to th
rest state or specific initial conditions can lead to undampe
propagation of excitation waves. Both these properties ar

common features of a generic excitable medium.
System(1), (2) was integrated for domains of different

shape with time stept=0.02, and space stdp=0.4 under

Dirichlet conditions at boundary (u|-=0) corresponding to

the common experimental situation where a piece of gel with

an immobilized catalyst is placed into BZ solution.
In the autonomous systeifl) and (2) with I(t)=0, by
choosing appropriate initial conditions, a rigidly rotating spi-

ral wave can be created in a circular domain as illustrated in

Fig. 1. The measured period of this rotation Tis 27/ w
=51.38 and the spiral pitch is=64.0.

IIl. RESONANT DRIFT OF SPIRAL WAVES

Without external forcing[i.e., whenl(t)=0] the spiral
wave tip [the point whereu(x,y,t)=0.6 anddu/dt=0] de-
scribes a circular orbit of radiuR,=5.87=0.092. Small
periodic variations of(t) induce deformation of the tip tra-
jectory and
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lead to resonant drift of the spiral wave core as shown in Fig.
1. Theoretical[22-23 and experimental26—2§ investiga-
tions suggest that the resonant drift is a general property of
excitable media regardless of their local kinetics.

The direction of the drift, of course, depends on the initial
orientation of the spiral, which will be specified below by the
angle ®,. This value represents the initial orientation of an
Archimedean spiral that approximates a spiral wave front far
away from the core center:

(r,t):@)o—%”wt, (3)
where (®,r) are polar coordinates with their origin at the
core center. For example, the front of the spiral shown in Fig.
1 is approximated &t=0 by an Archimedean spirgB) with
0,=0, since at the intersection with the boundary we have
O(3\/2,0=-37.

Assume that for®,=0 weak resonant modulatiok(t)
=A coqwt) induces drift specified by angle=¢ (see Fig.
1). Angle ¢ is a characteristic of the given medium. If the
spiral is initially turned by angl®,+ 0, the drift direction
will also be turned byB, i.e., y=¢+0,. On the other hand,
modulation in the form ofl (t)=A coqwt-¢,,) with phase
¢m can be considered as modulation with=0, but with the
initial spiral orientation taken at tim&= ¢,/ w. Thus, for
arbitrarily choser®, and ¢,, the drift direction can be writ-
ten as

Y=¢+0p+ wly= ¢+ Oy + . (4)

The parametep can be determined analytically if the under-
lying model of the excitable medium satisfies some special
conditions[22,25. However, for an arbitrary form of func-
tions F(u,v) and G(u,v) in system(1) this problem is un-
solved. In our case, Eq$2), this constant has been deter-
mined numerically by computations of resonant drift with
well defined values o, and ¢,,. The resonant drift com-

%uted for®,=0 and¢,,=0 is illustrated in Fig. 1. The value

ef drift angle obtained ig/=-0.17r. Substituting these values
hto Eq.(4) we gete=-0.14r. This value will be used below
where the direction of drift induced by global feedback is
determined.

IV. DRIFT VELOCITY INDUCED BY GLOBAL
FEEDBACK

To realize global feedback the modulation sigihd) is
computed a$14,2Qq
I(t) =kp(B(t = 7) = Bo), 5

where

B(t) = éJ v(x',y", tydx'dy’. (6)
S

Thus, the feedback signal is proportional to the integral value
B of the second variable over the simulated domain of &ea
taken with time delay. ConstanB in Eq.(5) is the value of
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this integral for a spiral wave that is rigidly rotating exactly L5
around the center of a circular domajior the model used i
By=0.1). The gainks, is fixed in the computations performed 1.0}
below atks,=0.1. I

If the spiral wave core is displaced with respect to the o5l
center of the circular domain, the computed inte@@) and, “r
hence, the modulation sign&(t) should be periodic func- C
tions of time with periodT. It is known that only the first <0-0_
component in the Fourier series of a weak periodic modula- >
tion induces resonant drif22,24. A general expression for _osk
this first component is i

1(t) = KiyA(X y)cod wt = w7+ Og = (X,y)], (7 1.0}
where (x,y) are the coordinates of the center of the spiral
wave core, and\(x,y) and ¢(x,y) are the amplitude and the -15 —
phase of the first Fourier componentBft). The amplitude -15 -1.0 -05 00 05 10 15
A(x,y) determines the absolute value of the drift velocity and x /A
the drift direction depends on the phagg(x,y)=wr—0,
+¢(X,y) [22-29. It follows from Egs.(4) and (7) that the FIG. 2. Drift velocity field of the spiral core induced by global
direction of drift induced by global feedback can be ex-feedback according to E¢5) (7=0) in a circular domain of radius
pressed as R=3\. Calculations of the velocity field are based on the
Archimedean spiral approximation. The open circle indicates an
YY) = o+ 0T+ (X,Y). (8) unstable fixed point at the domain center. The dottiehedgl circle

P . . shows the stabléunstablé limit cycle. The trajectory of the core
In contrast to Eq(4) the drift direction determined by E¢€) center computed from reaction-diffusion mo¢®l and(2) is shown

does not depend on the initial orientation of the spiral speciby the thick solid curve
fied by ®,. Thus, if the drift induced is so slow that the shape '

and the angular velocity of the rotating spiral always remain . )

the same, motion of the core center induced by feedback caffNts an unstable node. This unstable node is surrounded by
be described by a system of two ordinary differential equa® closed circular orbit of radius about 062\t all points of

tions [20]: this orbit the drift velocity is orthogonal to the radial direc-
tion, i.e., it is oriented exactly tangential to the orbit. In the

dx vicinity of this orbit the radial component of the drift veloc-
dt =V(Ajcosy, © ity is positive at points located closer to the domain center

and negative at the opposite side. Hence, this closed orbit is
dy a stable limit cycle. Due to the rotational symmetry of the
== =V(A)sin v, (100  domain, the amplitudé&(x,y) and, hence, the absolute value
dt of the drift velocity V(x,y) are constant on the limit cycle.

where V is the absolute value of the drift velocifijv(A) ~ The drift direction along this orbit coincides with the rota-
~KipA(X,y) for slow drift] and y=y(x,y) is specified by Eq. tional direction of the spiral wave that is counterclockwise in
(8). the case considered.

In weakly excitable media a spiral wave has the form of a _1here is another circular orbit of radius about 1M.2
thin curved stripe(see Fig. 1 In this case the integrad where the radial component of t'he Qr|ﬁ velocity vgnlshes_.
should be proportional to the arc lengthof the spiral wave Here the tangential component is directed clockwise. This
front: B=4L/S, wherej is a positive constant. By approxi- closed trajectory is unstable, since the radial component in
mating the shape of the front by an Archimedean spiraftS Vicinity is oriented away from itsee Fig. 2 _
[21,29,30, the determination of the amplitud&(x,y) and The stable limit cycle is the resonance attractor of spiral
the phased(x,y) can be reduced to a purely geometrical waves[19]. If the center of a spiral wave is initially located

procedure. Imagine that the center of an Archimedean spir:ﬁomeWhere between 'the domain center'arjd Fhe unstable
described by Eq(3) with ©,=0 is placed at a pointx,y) cycle due to feedback-induced resonant drift it will approach

Then the arc length of the spiral within a domain of given the stable limit cycle. The trajectory of the core center com-

shape should be a periodic function of time and the firs,lpm‘ad from reaction-diffusion syste) and(2) (thick solid

Fourier component of this function gives us the amplitudecurve In Fig. 3 agrees very well with the velocity field ob-

A(x,y) and the phasé(x,y), which determines the direction tained.
of drift in accordance with Eq8).

The velocity field obtained by application of the proce-
dure described for a circular domain of radiBg=1.5\ is
shown in Fig. 2. The drift velocitywhich is proportional to Figure 3 shows the velocity field that corresponds to an
amplitudeA(x,y)] vanishes at the domain center and repre-excitable domain of elliptical shape. The large axis of the

V. DRIFT VELOCITY FIELD
IN AN ELLIPTICAL DOMAIN
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FIG. 3. Drift velocity field of the spiral core induced by global  F|G. 4. Tangential component of the drift velocity along the
feedback according to Eq5) (7=0) in an elliptical domain with  ¢ircylar orbit shown in Fig. 2 computed for two elliptical domains
a/b=1.1. Calculations of the velocity field are based on theyty different eccentricity. Solid and dashed curves were computed

Archimedean spiral approximation. Half-closed circles denotefor 5/p=1.1 and 1.05, respectively. The dotted line represents com-
saddles. Closebpen circles indicate stableunstablg nodes. The  ytations for a circular domain.

basins of attraction of stable fixed points are shown by different
gray levels. The trajectories of the core center computed fron{a/b=1.05 the amplitude of these oscillations remains rela-
reaction-diffusion mode(l), (2) for two different initial locations of  tively small(dashed curve in Fig.)4and exerts only a quan-
the spiral wave are shown by thick solid curves. titative influence on the spiral wave dynamics. The former
limit cycle in a circular domain is not yet destroyed and
qualitatively the dynamics of the drift induced remains the

ellipsea is equal to 3 and its ratio to small axib is equal to  same.
a/b=1.1. Even this small deviation from circular shape dra- For the elliptical domain shown in Fig. G/b=1.1) the
matically changes the velocity field plotted in Fig. 2. The corresponding velocity along the former limit cycle is shown
limit cycle corresponding to the resonance attractor is dein Fig. 4 by the solid curve. In this cadé(a) so strongly
stroyed and two pairs of new fixed points appear where theleviates fromJ; that it even becomes negative at some seg-
drift velocity vanishes. One fixed point in each pair is aments of the circular orbit. Four values afat which U(«)
saddle and the other one is a stable node. Depending on the) correspond to the four fixed points that appeared due to
initial conditions, the spiral wave will approach one of the pjifyrcation shown in Fig. 3. Since beyond bifurcation the
two stable nodes. The velocity field computed allows one tgygints at the former limit cycle remain attracting in the radial
sketch corresponding basins of attraction. Trajectories of thgjrection(compare the orientation of the radial component of
core center obtained by numerical integration of E§sand  the drift induced near the orbit in Fig),3wo of these fixed
(2) for two different initial locations of the core are shown by points are classified as stable nodes, the two others as
thick solid curves in Fig. 3. These computations are in pergaddies.
fect agreement with the velocity field predicted by applying  The saddle-node bifurcation responsible for the qualita-
the Archimedean spiral approximation. tive change in spiral dynamics occursab=~1.07. At this

The observed bifurcation can be studied in more detail by,a|lue deformation of the circular domain becomes so large
considering the drift velocity computed for points at the limit that the drift velocity vanishes at two points of the former
cycle in the circular domairtsee Fig. 2 To this end it is |imit cycle. These points are located diametrically opposite
convenient to specify the location of points along this limit on a line which is turned in the counterclockwise direction
cycle by a polar angle: counted from theX axis. For each of  ith respect to theX axis.
these points a value &J(a) can be found that is the projec-  Further increase of the rata/b induces additional bifur-
tion of the drift velocity on the tangent to the limit cycle. cations. For instance, @/b=1.3 the velocity field has al-
Figure 4 showdJ(a) computed for two elliptical domains ready nine fixed pointgsee Fig. 5. Two additional saddle-
with different values of the rati@/b. The case ofa/b=1  node pairs appear due to a second bifurcation that occurs at
corresponds to the circular domain, where the velocity along/b~1.2. In comparing Figs. 3 and 5 one finds that the “old”
the limit cycle remains constarii(@)=U, >0 (dotted line in  saddle-node pairs that appeared due to the first bifurcation do
Fig. 4). not undergo any qualitative changes. Nodes in these pairs

Small deformation of the circular shape breaks down theemain stable and their locations are practically the same.
rotational symmetry of the domain and the drift velocity on The only difference induced by additional deformation of the
the limit cycle is no longer constant. Instead, as a function otlomain is an increase in distance between the node and
a it starts to oscillate around);. For small eccentricity saddle in both pairs.
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FIG. 5. Drift velocity field of the spiral core induced by global FIG. 6. Drift velocity field of the spiral core induced by global
feedback according to E@5) (7=0) in an elliptical domain with  feedback according to E@5) (7=0) in a square-shaped domain of
a/b=1.3. Calculations of the velocity field are based on thesize 3\.. Calculations of the velocity field are based on the
Archimedean spiral approximation. Half-closed circles denoteArchimedean spiral approximation. Closéapen circles indicate
saddles. Closedopen circles indicate stablgunstablg fixed stable(unstablg nodes. Half-closed circles denote saddles. The ba-
points. The basins of attraction of stable fixed points are shown bgins of attraction of stable fixed points are shown by different gray
different gray levels. The trajectories of the core center computedevels. The trajectories of the core center computed from reaction-
from reaction-diffusion mode(l) and(2) for three different initial  diffusion model(1) and(2) for three different initial locations of the
locations of the spiral wave are shown by thick solid curves. spiral wave are shown by thick solid curves.

In the last saddle-node pairs created the nodes are un-

stable. Hence, no additional attracting points appear in thélnd sides of a square of sizk are unstable. The saddles are
domain. However, the trajectories of the induced drift look@IS arranged rather regularly. The locations of all fixed
quite different in 'comparison to those observed b points are invariant under rotation of the domain by an angle

=1.1. Two of the core center trajectories shown in Fig. 5 areof /2.

computed starting from the same initial conditions as those Obviously, the jump from a circular- to a square-shaped

shown in Fig. 3. However, now both trajectories approachdom."’lln induces strong_dlst_urban(_:es in the sp|ra_l wave dy-
amics. In order to clarify bifurcations that result in the ap-

the same stable node, while in Fig. 3 they were going toward! ) . o .
two different ones. In order to reach the left stable node th&€arance of this cor_nphcated velocity field continuous defor-
initial location should be shifted far away from the domain mation of the domam. shape should bg applied. .
center(see the third trajectory in Fig.)5Hence, the dynam- To (.jo this a specially shaped exqtable domain |s.used
ics of spiral drift becomes more sensitive to the initial Ioca-W.hICh is bounded t_)y four arcs of ra_dlﬁgz Ry as shown in
tion if the domain deformation increases. Fig. 7. The left arc is centered at poiiR,— Ry, 0) marked by
a cross in Fig. #®). Hence, this arc touches the left side of
the square at point—-Ry,0) and this side of the square is
tangent to the arc. Similar rules specify the location of the
other three arcs. Obviously, R,=% the domain shape is
The velocity field related to a square-shaped domain ofquare, while foR,=R; it has a circular shape. Thus, smooth
size 3\ (seen in Fig. §is much more complicated than that transformation from a circular- to a square-shaped domain
computed for a circular domain. It contains 13 nodes and 12an be performed if ratidRy/R, is continuously decreased
saddles. One node, located exactly at the domain center, igom Ry/R,=1 to O.
unstable as is the center node in the circular domain of di- Figure {a) shows the computed velocity field that corre-
ameter 3 (see Fig. 2 Four nodes located at the corners of asponds to the relatively small deformatiéRy/R,=0.65 of
square of size about are stable and play the role of attrac- the circular domain with radiuBy=1.5\. Four saddle-node
tors of drifting spiral waves. The velocity field obtained in pairs appear and destroy the limit cycle in the circular do-
the Archimedean spiral approximation allows one to predictmain (cf. Fig. 2). A corresponding saddle-node bifurcation
what kind of stable nodes will be reached starting from atakes place aR;/R,~0.7. Further decrease of the ratio
given initial spiral wave location. Trajectories of the core Ry/R, causes a second bifurcationRy/ R,~ 0.6. The veloc-
center computed from the reaction-diffusion mo@Bl and ity field computed near this bifurcation &4/R,=0.5 is
(2) coincide well with these predictiorighick solid curves in  shown in Fig. {b), where four new saddle-node pairs have
Fig. 6). appeared. The newly created nodes are unstable in contrast to
Eight other nodes located approximately at the cornerghose that appear due to the first bifurcation.

VI. VELOCITY FIELD IN A SQUARE-SHAPED DOMAIN
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FIG. 8. Drift velocity field of the spiral core induced by global
feedback according to E@5) (7=26) in an elliptical domain with
a/b=1.1. Calculations of the velocity field are based on the
Archimedean spiral approximation. Half-closed circles denote
saddles. Opefrclosed circles indicate unstablgstablg nodes. The
basins of attraction of stable fixed points are shown by different
gray levels. The trajectories of the core center computed from
reaction-diffusion mode(1) and (2) for two different initial loca-
tions of the spiral wave are shown by thick solid curves.

(b)

main shape, and that is the main purpose of this work. How-
ever, in order to complete the picture, in the following the
influence of the time delay should be investigated.

First we note that the amplitud&(x,y) computed in Eq.
(7) does not depend on time delay Only the direction of
the drift determined by Eq8) depends on. Thus, the effect
of the time delay consists of simultaneous rotation of all

feedback according to E@5) (7=0) in two arc-bounded domains. v : . S
- . oo ectors in the drift velocity field by the same angle. Due
Ry4/R,=(a) 0.65 and(b) 0.5. Calculations of the velocity field are to this, the phase fields(x,y) computed forr=0 can be

based on the Archimedean spiral approximation. Half-closed circles i d to det ine th locity field f bit
denote saddles. Opeftlosed circles indicate unstabléstablg €aslly used to determine the velocily Tield Tor an arbitrary

nodes. The basins of attraction of stable fixed points are shown byalue of 7.

different gray levels. The trajectories of the core center computed FOF €xample, if the time delay is about one half the rota-
from reaction-diffusion mode{l) and (2) for two different initial  tion periodT, the corresponding velocity field is the same as
locations of the spiral wave are shown by thick solid curves. that obtained forr=0, except that the directions of all vectors
are changed to opposite ones. In particular, stable nodes or
limit cycles become unstable and vice versa.

To illustrate this important feature the velocity field for
he elliptical domain witha/b=1.1 andr=26=T/2 is pre-

FIG. 7. Drift velocity field of the spiral core induced by global

A third bifurcation occurs alRy/R,~ 0.3 and results in the
formation of four additional saddle-node pairs with unstablet

nodes. The velocity field computedf@/R,=0.2(not shown sented in Fig. 8. A comparison between Figs. 3 and 8 shows

here looks very similar to the limiting case &,/R,=0 that . : : .
corresponds to the square-shaped domain shown in Fig. 6.tr£;éh?nr;;gb:;ifgg Ig?:rit;)n g;ri”aftl)t(ﬁgsg(zgts)r?/vmglrr:e the
As in the case of an elliptical domain, a saddle-node pail§ ' ' P PP 29,

once created does not undergo any qualitative changes. Ho 1€ ampl|tudeA(>§,y) vanishes. Slnce_ this funptlon dqes not
ever, the distance between the saddle and the node is cofiéPend on the time delay, the locations of fixed points also

tinuously increased when the bifurcation parame@giR, o not depend om. However, both nodes, which were stable
becomes smaller. at 7=0, become unstable at=T/2 and the unstable node at

the domain center transforms into a stable ¢cfe Figs. 3

and 8. The stable and the unstable directions corresponding
VIl. ROLE OF TIME DELAY gap;\”z%ddle atr=0 are changed to opposite ones#T/2 is

In all examples considered before, the time delay in the The unstable closed orbit, which can be seen in Fig. 2 for
feedback loop was fixed te=0 to focus on the role of do- 7=0, is transformed into a stable limit cycleatT/2, which
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FIG. 9. Drift velocity field of the spiral core induced by global
feedback according to E¢b) (7=33) in a square-shaped domain of
size 3\. Calculations of the velocity field are based on the
Archimedean spiral approximation. Open circles indicate unstable
nodes. Half-closed circles denote saddles. The trajectory of the core
center computed from reaction-diffusion mo@®l and(2) is shown
by a thick solid curve.

represents now the resonance attractor of spiral waves. The
center of a spiral core initially located somewhere outside the
former stable orbit corresponding to=0 approaches this FIG. 10. Drift velocity field of the spiral core induced by global
stable limit cycle. If an initial location is chosen somewherefeedback according to E@5) (7=0) in a square-shaped domain of
inside the former stable orbit, the spiral wave core apsize 2 (@) and 4 (b). Calculations of the velocity field are based
proaches the domain center, where now a stable node is |6 the Archimedean spiral approximation. Half-closed circles de-
cated. The corresponding trajectories computed for th&ote saddles. Closedpen circles indicate stabl@unstablg nodes.
reaction-diffusion mode(1) and(2) are shown by thick solid The basins of attraction of stable fixed points are shown by different

lines in Fig. 8. gray levels. The trajectories of the core center computed from
Hence, by initially choosing=T/2, the bifurcation sce- reaction-diffusion model(1) and (2) are shown by thick solid
curves.

nario induced by smooth variation of the eccentricity of an
elliptical domain should look quite different compared to the
case ofr=0 considered above. For instance, the first saddlespiral wave dynamics strongly depends on the other param-
node bifurcation aia/b~1.07 does not change the spiral eters of the excitable system under consideration, particu-
wave dynamics as dramatically as st0. Figure 8 shows larly on the time delay in the global feedback loop.
that two saddle-node pairs appear after this bifurcation, but
they contain no attracting poin.ts. In contrast to this, a quali- VIIl. ROLE OF DOMAIN SIZE
tative change of the velocity field should be expected after
the second bifurcation a/b=1.2, due to the formation of Figure 10 illustrates the impact of the domain size on the
two stable nodes. spiral wave dynamics induced by global feedback. The first
Another interesting example for the important role of theconclusion following from a comparison between Figs(&]l0
time delay was found in application to a square-shaped doand 1@b) is that the complexity of the drift velocity fields
main shown in Fig. 6. It is clear, that if=T/2 all stable dramatically increases with the domain size. On the other
nodes in the drift velocity field become unstable and vicehand, one can find regularity in this increase of complexity.
versa. However, in a narrow range of time delay near The drift velocity field computed for the squared-shaped do-
=0.65T all nodes shown in Fig. 6 become unstable. Thismain of size 2 contains only one stable node. The basin of
unusual situation is illustrated by Fig. 9. In this case theattraction of this node is restricted by separatrixes of four
trajectory of the core center starting near the domain centegaddles beginning at four unstable nodes. It is important to
asymptotically achieves a stable close orbit that represengiress that topologically similar cells that contain one center
the resonance attractor of spiral waves. Its shape considenode surrounded by four saddles and four nodes also can be
ably differs from the circular orbit observed in a circular found in square-shaped domains of larger size® Figs. 6
domain. and 1@b)]. The exact shape of these cells is slightly differ-
Thus, the impact of the shape of a confined domain on thent, but they all have the same characteristic size of about
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and are adjoined side to side. While in the square domain ahe drift velocity field(Fig. 5). In addition to elliptical do-
size 2 there is room for only one such cell, domains af 3 mains of different eccentricity, square-shaped domains of
and 4 already include four and nine cells, respectively.different sizes(cf. Figs. 6 and 1pand a smooth transition
Thus, in a square-shaped domain of siethe number of ~ from a circular domain to a square-shaped one were consid-
elementary cells is expected to be-1)2. ered(Fig. 7). . .
The cellular structure of the drift velocity field is a char- A comparison of Figs. 2 and 6 demonstrates how dramatic

acteristic feature of a square-shaped domain in contrast to §€ influence of the domain shape on the spiral wave dynam-
circular domain, where closed circular orbits constitute a®S ¢@n be. Thls_ha_s to be k_ept In m"ﬁd when a square-sh_aped
family of limit cycles, rather than a set of fixed poirfts9]. e?<C|ta.bIe domain is used in experiments with a reaction-
In a disk of sufficiently large size, stable limit cyclégso- dlffgsmn systetm under glo}:t)a}l feledbatﬁk.t . llintical d
nance attractoysare located concentrically with spacing mair? rthsg ?irr?qilgnrggjso r<L\Sp|!)e§rgnecaer ofa':WI(;1 :;dglel?nl(():(?e pc;i-irs
Unstable limit cycles separate neighboring basins of attracg expected. It was demonstrated that a circular domain can
tion and are also located concentrically with spatial pehod }

g ) ) be smoothly transformed into a square-shaped one and con-
[19]. Thus, the main conclusion that the complexity of the gy jnvariance with respect to the rotationi2 (see Fig.
drift velocity field increases with the domain size and SOMe7) The complicated velocity field shown in Fig. 6 is the

periodicity of basins of attraction takes place represents gesylt of three successive saddle-node bifurcations, each of
rather general rule. which led to the simultaneous appearance of four saddle-
Another important conclusion can be made about the stanode pairs.
b|||ty of the fixed pOint at the middle of the Square. This Up to now there has been no ana'ytica' Way to describe
fixed point is stable if the domain size =2 or 4 and the observed saddle-node bifurcations which are responsible
unstable whem=3. ThUS, with a monotonous increase of thefor the appearance of new fixed points due to smooth defor-
domain size the Stab”lty and |nStab|I|ty of the middle pOint mation of a given domain. However, the proposed approach
alternate periodically. Similar periodicity has been observethased on the Archimedean spiral approximation considerably
in the case of a circular doma[i8,19. Moreover, the sta- simplifies the underlying description in terms of a nonlinear
bility of the center point in a circular domain has been studyeaction-diffusion model subjected to global feedback. Due
ied analytically[19]. Using these resullts it is easy to see thattg this simplification analytical study of the problem is an
phases(x,0) of the feedback signal for small displacementnteresting challenge for future work.
x<\ of the core center with respect to the domain center Qur study demonstrated that the method for determination
obeys the following expression: of the drift velocity field proposed recent[20] can be ef-
_ _ fectively applied to domains of different size and shape.
¢(x,0)=m(n-1), (1D However, to provide a quantitatively correct velocity field
wheren is the diameter of the circular domain expressed inthe distance from the spiral core center to the boundary
units of N. Thus, an increase of the domain size fronto  should be large enougtat least more than tw&,), other-
n+1 results in a quite opposite drift direction, and a stablewise the boundary influence becomes essential. Due to these
(unstable center point becomes unstaljktablg. The same boundary effects the radius of the resonance attractor can
rule is obviously valid for the stability of the middle point in differ from that in theoretical predictionfl9]. Moreover,
a square-shaped domain with diameterof an inscribed boundary effects can induce spiral drift along a Neumann
circle. boundary even without global feedbafd4,31,32.
It is important also to mention that the critical eccentricity  If the domain size is larger than the spiral wave piich
of an elliptical domain corresponding to the observed saddlethe spiral wave dynamics becomes more diverse since the
node bifurcations depends on the domain size. For instancdrift velocity field can contain multiple attractors. Boundary
in this work an elliptical domain with large axis a=3\ is  conditions(Dirichlet or Neumann typehave practically no
analyzed and the first bifurcation occursagab=~1.07. If the influence on the spiral wave drift induced by global feedback
large axisa=2\ the bifurcation takes place atb~1.2[20]. in a domain of such size, and the method applied is espe-
cially precise. On the other hand, if the domain size exceeds
about 10, the feedback mechanism ceases to be effective
since alternations the feedback signal becomes very weak
The study performed demonstrates the diversity of spiraand comparable with the level of noise.
waves dynamics in excitable domains of different shapes Note that in all the cases considered induced drift of a
subjected to global feedback. As an extension of the recentlgounterclockwise rotating spiral was investigated. Velocity
reported experimental and computational results related tbelds in the case of a clockwise rotating spiral can be ob-
spiral wave drift in elliptical domaing20] a much more sys- tained as a mirror image of the ones presented.
tematic study was performed. It was shown that under In summary, the shape of the excitable domain proved to
smooth variation of the eccentricity of an elliptical domain be a very essential control parameter for spiral wave dynam-
even relatively small deformation of the domain shape carics under global feedback. This paper focused on the role of
result in a dramatic change in the spiral wave dynamics duthe domain shape keeping other control parametbessize
to saddle-node bifurcation in the velocity field of the reso-of the domain, the time delay and the gairk;,) constant.
nant drift (cf. Figs. 2 and 3 It was found that further in- Very preliminary considerations of the role of the time delay
crease of the eccentricity results in a second bifurcation irand the domain size show that they can essentially change

IX. DISCUSSION
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