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It is found that the dynamics of spiral waves subjected to global feedback is extremely sensitive to the
domain shape. Bifurcations in the velocity field which specifies the resonant drift of the spiral wave core
induced by global feedback are analyzed. It is shown, for example, that smooth variation of the eccentricity of
an elliptical domain induces a cascade of bifurcations that can dramatically change the spiral wave evolution.
In a square domain a set of point attractors appears instead of the circular resonance attractor typical of a
circular domain. These predictions are in good quantitative agreement with numerical integrations of an
excitable reaction-diffusion system performed under global feedback.
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I. INTRODUCTION

Pattern formation in distributed reaction-diffusion systems
with nonlinear local kinetics is studied for application to
quite different physical, biological and chemical media[1,2].
It has become clear in recent years that pattern evolution in
many experimental systems is affected by some nonlocal ef-
fects, e.g., global feedback, when the local kinetics is influ-
enced by the integral of the activity taken over the whole
medium in a confined geometry. Examples of experimental
systems that include such global feedback are an electrically
heated catalytic surface, the average temperature of which is
kept constant[3], ac gas discharge between two glass plates
[4], a catalytic surface kept in a continuously stirred tank
reactor(CSTR) [5], semiconductor devices[6], etc.

Recent experimental investigations of the Belousov–
Zhabotinsky(BZ) reaction[7,8] and catalytic CO oxidation
on platinum [9] proved that global feedback can be used
efficiently to control pattern formation processes. Theoretical
study demonstrates that global feedback creates conditions
for the appearance of quite new or the stabilization of known
spatio-temporal patterns[10–13].

A spiral wave(a pattern typical in excitable media) can be
also effectively manipulated using global feedback as was
found in numerical computations[14] and in experiments
with the BZ reaction[15]. Such control is important for dif-
ferent applications, e.g., low voltage defibrillation of cardiac
tissue[16,17].

It was shown recently that the size of the excitable do-
main is a very important control parameter, in addition to
other very common ones like the time delay and gain in the
feedback loop[18,19]. For instance, the stability conditions
of a rigidly rotating spiral placed near the center of a circular
domain directly depend on the domain size. Moreover, on
disks of sufficiently large size, global feedback induces mo-
tion of the spiral wave core along a closed circular orbit(the
so-called resonance attractor) [15,19,20].

Up to now the role of domain shape has not been studied
systematically in relation to reaction-diffusion systems with
global feedback. Circular- or square-shaped domains are
commonly used in experiments and computations as they are
the two simplest types of two-dimensional confined geom-
etry [7,9,11,14,16]. The only well established result is that in

two-dimensional domains the variety of spatio-temporal pat-
terns is much broader than in one-dimensional systems[11].

Numerical and experimental results reported recently[20]
demonstrate a strong difference in spiral wave dynamics in
circular and elliptical domains subjected to global feedback.
In this work the influence of domain shape on the evolution
of spiral waves is investigated in more detail. The basic idea
is to determine a velocity field that specifies the resonant
drift induced by global feedback in domains of different
shape. The study is based on a generic description of excit-
able media using only minimal information about their prop-
erties. The main assumption is that the feedback signal is so
small that the drift induced is slow. The results of this sim-
plified consideration are compared with numerical data ob-
tained by integration of a specific reaction-diffusion model.

II. MATHEMATICAL MODEL

It is well known that the qualitative dynamic features of
wave processes in reaction-diffusion systems are rather ro-
bust and insensitive to the exact form of mathematical model
applied[1,2,21]. We use below a two-component model,

] u

] t
= Du¹

2u + Fsu,vd − Istd,

] v
] t

= eGsu,vd, s1d

where variablesusx,y,td andvsx,y,td can be interpreted as
concentrations of the reagents within a thin(quasitwo-
dimensional) reaction layer. The functionIstd specifies the
external forcing(e.g., illumination of the light-sensitive BZ
solution) applied uniformly to the whole simulated domain.

For the functionsFsu,vd and Gsu,vd we take the form
used earlier in Refs.[14,19–21]:

Fsu,vd = fsud − v,

fsud = 5− k1u, u ø s,

kfsu − ad, s , u , 1 − s,

k2s1 − ud, 1 −s ø u,
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Gsu,vd = Hkgu − v, kgu − v ù 0,

keskgu − vd, kgu − v , 0,
s2d

with the following parameter values:kf =1.7, kg=2, ke=6.0,
a=0.1,s=0.01,e=0.3, andDu=1. Parametersk1 andk2 are
chosen in such a way that functionfsud is continuous atu
=s and 1−s.

This system has a single uniform rest statefusx,yd
=vsx,yd=0g which is stable with respect to small perturba-
tions. However, suprathreshold perturbation applied to the
rest state or specific initial conditions can lead to undamped
propagation of excitation waves. Both these properties are
common features of a generic excitable medium.

System(1), (2) was integrated for domains of different
shape with time stepDt=0.02, and space steph=0.4 under
Dirichlet conditions at boundaryG suuG=0d corresponding to
the common experimental situation where a piece of gel with
an immobilized catalyst is placed into BZ solution.

In the autonomous system(1) and (2) with Istd=0, by
choosing appropriate initial conditions, a rigidly rotating spi-
ral wave can be created in a circular domain as illustrated in
Fig. 1. The measured period of this rotation isT=2p /v
=51.38 and the spiral pitch isl=64.0.

III. RESONANT DRIFT OF SPIRAL WAVES

Without external forcing[i.e., when Istd=0] the spiral
wave tip [the point whereusx,y,td=0.6 and]u/]t=0] de-
scribes a circular orbit of radiusRq=5.87=0.092l. Small
periodic variations ofIstd induce deformation of the tip tra-
jectory and

lead to resonant drift of the spiral wave core as shown in Fig.
1. Theoretical[22–25] and experimental[26–28] investiga-
tions suggest that the resonant drift is a general property of
excitable media regardless of their local kinetics.

The direction of the drift, of course, depends on the initial
orientation of the spiral, which will be specified below by the
angleQ0. This value represents the initial orientation of an
Archimedean spiral that approximates a spiral wave front far
away from the core center:

Qsr,td = Q0 −
2p

l
r + vt, s3d

where sQ ,rd are polar coordinates with their origin at the
core center. For example, the front of the spiral shown in Fig.
1 is approximated att=0 by an Archimedean spiral(3) with
Q0=0, since at the intersection with the boundary we have
Qs3l /2 ,0d=−3p.

Assume that forQ0=0 weak resonant modulationIstd
=A cossvtd induces drift specified by angleg=w (see Fig.
1). Angle w is a characteristic of the given medium. If the
spiral is initially turned by angleQ0Þ0, the drift direction
will also be turned byQ0, i.e.,g=w+Q0. On the other hand,
modulation in the form ofIstd=A cossvt−fmd with phase
fm can be considered as modulation withfm=0, but with the
initial spiral orientation taken at timet0=fm/v. Thus, for
arbitrarily chosenQ0 andfm the drift direction can be writ-
ten as

g = w + Q0 + vt0 = w + Q0 + fm. s4d

The parameterw can be determined analytically if the under-
lying model of the excitable medium satisfies some special
conditions[22,25]. However, for an arbitrary form of func-
tions Fsu,vd and Gsu,vd in system(1) this problem is un-
solved. In our case, Eqs.(2), this constant has been deter-
mined numerically by computations of resonant drift with
well defined values ofQ0 and fm. The resonant drift com-
puted forQ0=0 andfm=0 is illustrated in Fig. 1. The value
of drift angle obtained isg=−0.1p. Substituting these values
into Eq. (4) we getw=−0.1p. This value will be used below
where the direction of drift induced by global feedback is
determined.

IV. DRIFT VELOCITY INDUCED BY GLOBAL
FEEDBACK

To realize global feedback the modulation signalIstd is
computed as[14,20]

Istd = kfb„Bst − td − B0…, s5d

where

Bstd =
1

S
E

S
vsx8,y8,tddx8dy8. s6d

Thus, the feedback signal is proportional to the integral value
B of the second variable over the simulated domain of areaS
taken with time delayt. ConstantB0 in Eq. (5) is the value of

FIG. 1. Resonant drift of a spiral wave in a circular domain with
radiusRd=3l induced by periodic forcingIstd=0.02 cossvtd. The
excitable medium is described by system(1) and(2). In the shaded
region vsx,y,0dù0.2. The trajectories of the spiral wave tip(thin
solid curve) and of the spiral core(thick solid line) are shown. The
direction of drift is specified by the angleg<−0.1p.
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this integral for a spiral wave that is rigidly rotating exactly
around the center of a circular domain(for the model used
B0=0.1). The gainkfb is fixed in the computations performed
below atkfb=0.1.

If the spiral wave core is displaced with respect to the
center of the circular domain, the computed integralBstd and,
hence, the modulation signalIstd should be periodic func-
tions of time with periodT. It is known that only the first
component in the Fourier series of a weak periodic modula-
tion induces resonant drift[22,24]. A general expression for
this first component is

Istd = kfbAsx,ydcosfvt − vt + Q0 − fsx,ydg, s7d

where sx,yd are the coordinates of the center of the spiral
wave core, andAsx,yd andfsx,yd are the amplitude and the
phase of the first Fourier component ofBstd. The amplitude
Asx,yd determines the absolute value of the drift velocity and
the drift direction depends on the phasefmsx,yd=vt−Q0

+fsx,yd [22–25]. It follows from Eqs.(4) and (7) that the
direction of drift induced by global feedback can be ex-
pressed as

gsx,yd = w + vt + fsx,yd. s8d

In contrast to Eq.(4) the drift direction determined by Eq.(8)
does not depend on the initial orientation of the spiral speci-
fied byQ0. Thus, if the drift induced is so slow that the shape
and the angular velocity of the rotating spiral always remain
the same, motion of the core center induced by feedback can
be described by a system of two ordinary differential equa-
tions [20]:

dx

dt
= VsAdcosg, s9d

dy

dt
= VsAdsin g, s10d

where V is the absolute value of the drift velocity[VsAd
,kfbAsx,yd for slow drift] andg=gsx,yd is specified by Eq.
(8).

In weakly excitable media a spiral wave has the form of a
thin curved stripe(see Fig. 1). In this case the integralB
should be proportional to the arc lengthL of the spiral wave
front: B=bL /S, whereb is a positive constant. By approxi-
mating the shape of the front by an Archimedean spiral
[21,29,30], the determination of the amplitudeAsx,yd and
the phasefsx,yd can be reduced to a purely geometrical
procedure. Imagine that the center of an Archimedean spiral
described by Eq.(3) with Q0=0 is placed at a pointsx,yd.
Then the arc lengthL of the spiral within a domain of given
shape should be a periodic function of time and the first
Fourier component of this function gives us the amplitude
Asx,yd and the phasefsx,yd, which determines the direction
of drift in accordance with Eq.(8).

The velocity field obtained by application of the proce-
dure described for a circular domain of radiusRd=1.5l is
shown in Fig. 2. The drift velocity[which is proportional to
amplitudeAsx,yd] vanishes at the domain center and repre-

sents an unstable node. This unstable node is surrounded by
a closed circular orbit of radius about 0.62l. At all points of
this orbit the drift velocity is orthogonal to the radial direc-
tion, i.e., it is oriented exactly tangential to the orbit. In the
vicinity of this orbit the radial component of the drift veloc-
ity is positive at points located closer to the domain center
and negative at the opposite side. Hence, this closed orbit is
a stable limit cycle. Due to the rotational symmetry of the
domain, the amplitudeAsx,yd and, hence, the absolute value
of the drift velocity Vsx,yd are constant on the limit cycle.
The drift direction along this orbit coincides with the rota-
tional direction of the spiral wave that is counterclockwise in
the case considered.

There is another circular orbit of radius about 1.12l
where the radial component of the drift velocity vanishes.
Here the tangential component is directed clockwise. This
closed trajectory is unstable, since the radial component in
its vicinity is oriented away from it(see Fig. 2).

The stable limit cycle is the resonance attractor of spiral
waves[19]. If the center of a spiral wave is initially located
somewhere between the domain center and the unstable
cycle due to feedback-induced resonant drift it will approach
the stable limit cycle. The trajectory of the core center com-
puted from reaction-diffusion system(1) and(2) (thick solid
curve in Fig. 2) agrees very well with the velocity field ob-
tained.

V. DRIFT VELOCITY FIELD
IN AN ELLIPTICAL DOMAIN

Figure 3 shows the velocity field that corresponds to an
excitable domain of elliptical shape. The large axis of the

FIG. 2. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=0d in a circular domain of radius
R=3l. Calculations of the velocity field are based on the
Archimedean spiral approximation. The open circle indicates an
unstable fixed point at the domain center. The dotted(dashed) circle
shows the stable(unstable) limit cycle. The trajectory of the core
center computed from reaction-diffusion model(1) and(2) is shown
by the thick solid curve.
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ellipsea is equal to 3l and its ratio to small axisb is equal to
a/b=1.1. Even this small deviation from circular shape dra-
matically changes the velocity field plotted in Fig. 2. The
limit cycle corresponding to the resonance attractor is de-
stroyed and two pairs of new fixed points appear where the
drift velocity vanishes. One fixed point in each pair is a
saddle and the other one is a stable node. Depending on the
initial conditions, the spiral wave will approach one of the
two stable nodes. The velocity field computed allows one to
sketch corresponding basins of attraction. Trajectories of the
core center obtained by numerical integration of Eqs.(1) and
(2) for two different initial locations of the core are shown by
thick solid curves in Fig. 3. These computations are in per-
fect agreement with the velocity field predicted by applying
the Archimedean spiral approximation.

The observed bifurcation can be studied in more detail by
considering the drift velocity computed for points at the limit
cycle in the circular domain(see Fig. 2). To this end it is
convenient to specify the location of points along this limit
cycle by a polar anglea counted from theX axis. For each of
these points a value ofUsad can be found that is the projec-
tion of the drift velocity on the tangent to the limit cycle.
Figure 4 showsUsad computed for two elliptical domains
with different values of the ratioa/b. The case ofa/b=1
corresponds to the circular domain, where the velocity along
the limit cycle remains constant,Usad=U1.0 (dotted line in
Fig. 4).

Small deformation of the circular shape breaks down the
rotational symmetry of the domain and the drift velocity on
the limit cycle is no longer constant. Instead, as a function of
a it starts to oscillate aroundU1. For small eccentricity

sa/b=1.05d the amplitude of these oscillations remains rela-
tively small (dashed curve in Fig. 4) and exerts only a quan-
titative influence on the spiral wave dynamics. The former
limit cycle in a circular domain is not yet destroyed and
qualitatively the dynamics of the drift induced remains the
same.

For the elliptical domain shown in Fig. 3sa/b=1.1d the
corresponding velocity along the former limit cycle is shown
in Fig. 4 by the solid curve. In this caseUsad so strongly
deviates fromU1 that it even becomes negative at some seg-
ments of the circular orbit. Four values ofa at whichUsad
=0 correspond to the four fixed points that appeared due to
bifurcation shown in Fig. 3. Since beyond bifurcation the
points at the former limit cycle remain attracting in the radial
direction(compare the orientation of the radial component of
the drift induced near the orbit in Fig. 3), two of these fixed
points are classified as stable nodes, the two others as
saddles.

The saddle-node bifurcation responsible for the qualita-
tive change in spiral dynamics occurs ata/b<1.07. At this
value deformation of the circular domain becomes so large
that the drift velocity vanishes at two points of the former
limit cycle. These points are located diametrically opposite
on a line which is turned in the counterclockwise direction
with respect to theX axis.

Further increase of the ratioa/b induces additional bifur-
cations. For instance, ata/b=1.3 the velocity field has al-
ready nine fixed points(see Fig. 5). Two additional saddle-
node pairs appear due to a second bifurcation that occurs at
a/b<1.2. In comparing Figs. 3 and 5 one finds that the “old”
saddle-node pairs that appeared due to the first bifurcation do
not undergo any qualitative changes. Nodes in these pairs
remain stable and their locations are practically the same.
The only difference induced by additional deformation of the
domain is an increase in distance between the node and
saddle in both pairs.

FIG. 3. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=0d in an elliptical domain with
a/b=1.1. Calculations of the velocity field are based on the
Archimedean spiral approximation. Half-closed circles denote
saddles. Closed(open) circles indicate stable(unstable) nodes. The
basins of attraction of stable fixed points are shown by different
gray levels. The trajectories of the core center computed from
reaction-diffusion model(1), (2) for two different initial locations of
the spiral wave are shown by thick solid curves.

FIG. 4. Tangential component of the drift velocity along the
circular orbit shown in Fig. 2 computed for two elliptical domains
with different eccentricity. Solid and dashed curves were computed
for a/b=1.1 and 1.05, respectively. The dotted line represents com-
putations for a circular domain.
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In the last saddle-node pairs created the nodes are un-
stable. Hence, no additional attracting points appear in the
domain. However, the trajectories of the induced drift look
quite different in comparison to those observed fora/b
=1.1. Two of the core center trajectories shown in Fig. 5 are
computed starting from the same initial conditions as those
shown in Fig. 3. However, now both trajectories approach
the same stable node, while in Fig. 3 they were going toward
two different ones. In order to reach the left stable node the
initial location should be shifted far away from the domain
center(see the third trajectory in Fig. 5). Hence, the dynam-
ics of spiral drift becomes more sensitive to the initial loca-
tion if the domain deformation increases.

VI. VELOCITY FIELD IN A SQUARE-SHAPED DOMAIN

The velocity field related to a square-shaped domain of
size 3l (seen in Fig. 6) is much more complicated than that
computed for a circular domain. It contains 13 nodes and 12
saddles. One node, located exactly at the domain center, is
unstable as is the center node in the circular domain of di-
ameter 3l (see Fig. 2). Four nodes located at the corners of a
square of size aboutl are stable and play the role of attrac-
tors of drifting spiral waves. The velocity field obtained in
the Archimedean spiral approximation allows one to predict
what kind of stable nodes will be reached starting from a
given initial spiral wave location. Trajectories of the core
center computed from the reaction-diffusion model(1) and
(2) coincide well with these predictions(thick solid curves in
Fig. 6).

Eight other nodes located approximately at the corners

and sides of a square of size 2l are unstable. The saddles are
also arranged rather regularly. The locations of all fixed
points are invariant under rotation of the domain by an angle
of p /2.

Obviously, the jump from a circular- to a square-shaped
domain induces strong disturbances in the spiral wave dy-
namics. In order to clarify bifurcations that result in the ap-
pearance of this complicated velocity field continuous defor-
mation of the domain shape should be applied.

To do this a specially shaped excitable domain is used
which is bounded by four arcs of radiusRbùRd as shown in
Fig. 7. The left arc is centered at pointsRb−Rd,0d marked by
a cross in Fig. 7(a). Hence, this arc touches the left side of
the square at points−Rd,0d and this side of the square is
tangent to the arc. Similar rules specify the location of the
other three arcs. Obviously, ifRb=` the domain shape is
square, while forRb=Rd it has a circular shape. Thus, smooth
transformation from a circular- to a square-shaped domain
can be performed if ratioRd/Rb is continuously decreased
from Rd/Rb=1 to 0.

Figure 7(a) shows the computed velocity field that corre-
sponds to the relatively small deformationsRd/Rb=0.65d of
the circular domain with radiusRd=1.5l. Four saddle-node
pairs appear and destroy the limit cycle in the circular do-
main (cf. Fig. 2). A corresponding saddle-node bifurcation
takes place atRd/Rb<0.7. Further decrease of the ratio
Rd/Rb causes a second bifurcation atRd/Rb<0.6. The veloc-
ity field computed near this bifurcation atRd/Rb=0.5 is
shown in Fig. 7(b), where four new saddle-node pairs have
appeared. The newly created nodes are unstable in contrast to
those that appear due to the first bifurcation.

FIG. 5. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=0d in an elliptical domain with
a/b=1.3. Calculations of the velocity field are based on the
Archimedean spiral approximation. Half-closed circles denote
saddles. Closed(open) circles indicate stable(unstable) fixed
points. The basins of attraction of stable fixed points are shown by
different gray levels. The trajectories of the core center computed
from reaction-diffusion model(1) and (2) for three different initial
locations of the spiral wave are shown by thick solid curves.

FIG. 6. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=0d in a square-shaped domain of
size 3l. Calculations of the velocity field are based on the
Archimedean spiral approximation. Closed(open) circles indicate
stable(unstable) nodes. Half-closed circles denote saddles. The ba-
sins of attraction of stable fixed points are shown by different gray
levels. The trajectories of the core center computed from reaction-
diffusion model(1) and(2) for three different initial locations of the
spiral wave are shown by thick solid curves.
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A third bifurcation occurs atRd/Rb<0.3 and results in the
formation of four additional saddle-node pairs with unstable
nodes. The velocity field computed atRd/Rb=0.2 (not shown
here) looks very similar to the limiting case ofRd/Rb=0 that
corresponds to the square-shaped domain shown in Fig. 6.

As in the case of an elliptical domain, a saddle-node pair
once created does not undergo any qualitative changes. How-
ever, the distance between the saddle and the node is con-
tinuously increased when the bifurcation parameterRd/Rb
becomes smaller.

VII. ROLE OF TIME DELAY

In all examples considered before, the time delay in the
feedback loop was fixed tot=0 to focus on the role of do-

main shape, and that is the main purpose of this work. How-
ever, in order to complete the picture, in the following the
influence of the time delay should be investigated.

First we note that the amplitudeAsx,yd computed in Eq.
(7) does not depend on time delayt. Only the direction of
the drift determined by Eq.(8) depends ont. Thus, the effect
of the time delay consists of simultaneous rotation of all
vectors in the drift velocity field by the same anglevt. Due
to this, the phase fieldfsx,yd computed fort=0 can be
easily used to determine the velocity field for an arbitrary
value oft.

For example, if the time delay is about one half the rota-
tion periodT, the corresponding velocity field is the same as
that obtained fort=0, except that the directions of all vectors
are changed to opposite ones. In particular, stable nodes or
limit cycles become unstable and vice versa.

To illustrate this important feature the velocity field for
the elliptical domain witha/b=1.1 andt=26<T/2 is pre-
sented in Fig. 8. A comparison between Figs. 3 and 8 shows
that the number and location of all fixed points remain the
same. In fact, a fixed point appears at those sitessx,yd, where
the amplitudeAsx,yd vanishes. Since this function does not
depend on the time delay, the locations of fixed points also
do not depend ont. However, both nodes, which were stable
at t=0, become unstable att=T/2 and the unstable node at
the domain center transforms into a stable one(cf. Figs. 3
and 8). The stable and the unstable directions corresponding
to a saddle att=0 are changed to opposite ones ift=T/2 is
applied.

The unstable closed orbit, which can be seen in Fig. 2 for
t=0, is transformed into a stable limit cycle att=T/2, which

FIG. 7. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=0d in two arc-bounded domains.
Rd/Rb=sad 0.65 and(b) 0.5. Calculations of the velocity field are
based on the Archimedean spiral approximation. Half-closed circles
denote saddles. Open(closed) circles indicate unstable(stable)
nodes. The basins of attraction of stable fixed points are shown by
different gray levels. The trajectories of the core center computed
from reaction-diffusion model(1) and (2) for two different initial
locations of the spiral wave are shown by thick solid curves.

FIG. 8. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=26d in an elliptical domain with
a/b=1.1. Calculations of the velocity field are based on the
Archimedean spiral approximation. Half-closed circles denote
saddles. Open(closed) circles indicate unstable(stable) nodes. The
basins of attraction of stable fixed points are shown by different
gray levels. The trajectories of the core center computed from
reaction-diffusion model(1) and (2) for two different initial loca-
tions of the spiral wave are shown by thick solid curves.
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represents now the resonance attractor of spiral waves. The
center of a spiral core initially located somewhere outside the
former stable orbit corresponding tot=0 approaches this
stable limit cycle. If an initial location is chosen somewhere
inside the former stable orbit, the spiral wave core ap-
proaches the domain center, where now a stable node is lo-
cated. The corresponding trajectories computed for the
reaction-diffusion model(1) and(2) are shown by thick solid
lines in Fig. 8.

Hence, by initially choosingt=T/2, the bifurcation sce-
nario induced by smooth variation of the eccentricity of an
elliptical domain should look quite different compared to the
case oft=0 considered above. For instance, the first saddle-
node bifurcation ata/b<1.07 does not change the spiral
wave dynamics as dramatically as att=0. Figure 8 shows
that two saddle-node pairs appear after this bifurcation, but
they contain no attracting points. In contrast to this, a quali-
tative change of the velocity field should be expected after
the second bifurcation ata/b<1.2, due to the formation of
two stable nodes.

Another interesting example for the important role of the
time delay was found in application to a square-shaped do-
main shown in Fig. 6. It is clear, that ift=T/2 all stable
nodes in the drift velocity field become unstable and vice
versa. However, in a narrow range of time delay neart
=0.65T all nodes shown in Fig. 6 become unstable. This
unusual situation is illustrated by Fig. 9. In this case the
trajectory of the core center starting near the domain center
asymptotically achieves a stable close orbit that represents
the resonance attractor of spiral waves. Its shape consider-
ably differs from the circular orbit observed in a circular
domain.

Thus, the impact of the shape of a confined domain on the

spiral wave dynamics strongly depends on the other param-
eters of the excitable system under consideration, particu-
larly on the time delay in the global feedback loop.

VIII. ROLE OF DOMAIN SIZE

Figure 10 illustrates the impact of the domain size on the
spiral wave dynamics induced by global feedback. The first
conclusion following from a comparison between Figs. 10(a)
and 10(b) is that the complexity of the drift velocity fields
dramatically increases with the domain size. On the other
hand, one can find regularity in this increase of complexity.
The drift velocity field computed for the squared-shaped do-
main of size 2l contains only one stable node. The basin of
attraction of this node is restricted by separatrixes of four
saddles beginning at four unstable nodes. It is important to
stress that topologically similar cells that contain one center
node surrounded by four saddles and four nodes also can be
found in square-shaped domains of larger sizes[see Figs. 6
and 10(b)]. The exact shape of these cells is slightly differ-
ent, but they all have the same characteristic size of aboutl

FIG. 9. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=33d in a square-shaped domain of
size 3l. Calculations of the velocity field are based on the
Archimedean spiral approximation. Open circles indicate unstable
nodes. Half-closed circles denote saddles. The trajectory of the core
center computed from reaction-diffusion model(1) and(2) is shown
by a thick solid curve.

FIG. 10. Drift velocity field of the spiral core induced by global
feedback according to Eq.(5) st=0d in a square-shaped domain of
size 2l (a) and 4l (b). Calculations of the velocity field are based
on the Archimedean spiral approximation. Half-closed circles de-
note saddles. Closed(open) circles indicate stable(unstable) nodes.
The basins of attraction of stable fixed points are shown by different
gray levels. The trajectories of the core center computed from
reaction-diffusion model(1) and (2) are shown by thick solid
curves.
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and are adjoined side to side. While in the square domain of
size 2l there is room for only one such cell, domains of 3l
and 4l already include four and nine cells, respectively.
Thus, in a square-shaped domain of sizenl the number of
elementary cells is expected to besn−1d2.

The cellular structure of the drift velocity field is a char-
acteristic feature of a square-shaped domain in contrast to a
circular domain, where closed circular orbits constitute a
family of limit cycles, rather than a set of fixed points[19].
In a disk of sufficiently large size, stable limit cycles(reso-
nance attractors) are located concentrically with spacingl.
Unstable limit cycles separate neighboring basins of attrac-
tion and are also located concentrically with spatial periodl
[19]. Thus, the main conclusion that the complexity of the
drift velocity field increases with the domain size and some
periodicity of basins of attraction takes place represents a
rather general rule.

Another important conclusion can be made about the sta-
bility of the fixed point at the middle of the square. This
fixed point is stable if the domain size isn=2 or 4 and
unstable whenn=3. Thus, with a monotonous increase of the
domain size the stability and instability of the middle point
alternate periodically. Similar periodicity has been observed
in the case of a circular domain[18,19]. Moreover, the sta-
bility of the center point in a circular domain has been stud-
ied analytically[19]. Using these results it is easy to see that
phasefsx,0d of the feedback signal for small displacement
x!l of the core center with respect to the domain center
obeys the following expression:

fsx,0d = psn − 1d, s11d

wheren is the diameter of the circular domain expressed in
units of l. Thus, an increase of the domain size fromn to
n+1 results in a quite opposite drift direction, and a stable
(unstable) center point becomes unstable(stable). The same
rule is obviously valid for the stability of the middle point in
a square-shaped domain with diametern of an inscribed
circle.

It is important also to mention that the critical eccentricity
of an elliptical domain corresponding to the observed saddle-
node bifurcations depends on the domain size. For instance,
in this work an elliptical domain with large axis ofa=3l is
analyzed and the first bifurcation occurs ata/b<1.07. If the
large axisa=2l the bifurcation takes place ata/b<1.2 [20].

IX. DISCUSSION

The study performed demonstrates the diversity of spiral
waves dynamics in excitable domains of different shapes
subjected to global feedback. As an extension of the recently
reported experimental and computational results related to
spiral wave drift in elliptical domains[20] a much more sys-
tematic study was performed. It was shown that under
smooth variation of the eccentricity of an elliptical domain
even relatively small deformation of the domain shape can
result in a dramatic change in the spiral wave dynamics due
to saddle-node bifurcation in the velocity field of the reso-
nant drift (cf. Figs. 2 and 3). It was found that further in-
crease of the eccentricity results in a second bifurcation in

the drift velocity field (Fig. 5). In addition to elliptical do-
mains of different eccentricity, square-shaped domains of
different sizes(cf. Figs. 6 and 10) and a smooth transition
from a circular domain to a square-shaped one were consid-
ered(Fig. 7).

A comparison of Figs. 2 and 6 demonstrates how dramatic
the influence of the domain shape on the spiral wave dynam-
ics can be. This has to be kept in mind when a square-shaped
excitable domain is used in experiments with a reaction-
diffusion system under global feedback.

For symmetry reasons it is clear that in an elliptical do-
main the simultaneous appearance of two saddle-node pairs
is expected. It was demonstrated that a circular domain can
be smoothly transformed into a square-shaped one and con-
serve invariance with respect to the rotation byp /2 (see Fig.
7). The complicated velocity field shown in Fig. 6 is the
result of three successive saddle-node bifurcations, each of
which led to the simultaneous appearance of four saddle-
node pairs.

Up to now there has been no analytical way to describe
the observed saddle-node bifurcations which are responsible
for the appearance of new fixed points due to smooth defor-
mation of a given domain. However, the proposed approach
based on the Archimedean spiral approximation considerably
simplifies the underlying description in terms of a nonlinear
reaction-diffusion model subjected to global feedback. Due
to this simplification analytical study of the problem is an
interesting challenge for future work.

Our study demonstrated that the method for determination
of the drift velocity field proposed recently[20] can be ef-
fectively applied to domains of different size and shape.
However, to provide a quantitatively correct velocity field
the distance from the spiral core center to the boundary
should be large enough(at least more than twoRq), other-
wise the boundary influence becomes essential. Due to these
boundary effects the radius of the resonance attractor can
differ from that in theoretical predictions[19]. Moreover,
boundary effects can induce spiral drift along a Neumann
boundary even without global feedback[14,31,32].

If the domain size is larger than the spiral wave pitchl,
the spiral wave dynamics becomes more diverse since the
drift velocity field can contain multiple attractors. Boundary
conditions(Dirichlet or Neumann type) have practically no
influence on the spiral wave drift induced by global feedback
in a domain of such size, and the method applied is espe-
cially precise. On the other hand, if the domain size exceeds
about 10l, the feedback mechanism ceases to be effective
since alternations the feedback signal becomes very weak
and comparable with the level of noise.

Note that in all the cases considered induced drift of a
counterclockwise rotating spiral was investigated. Velocity
fields in the case of a clockwise rotating spiral can be ob-
tained as a mirror image of the ones presented.

In summary, the shape of the excitable domain proved to
be a very essential control parameter for spiral wave dynam-
ics under global feedback. This paper focused on the role of
the domain shape keeping other control parameters(the size
of the domain, the time delayt and the gainkfb) constant.
Very preliminary considerations of the role of the time delay
and the domain size show that they can essentially change
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the dynamical behavior of spiral waves. A more detailed in-
vestigation of spiral wave dynamics under simultaneous
variations of these control parameters is an interesting chal-
lenge for future theoretical and experimental study.
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